
J Supercomput (2018) 74:3875–3903
https://doi.org/10.1007/s11227-018-2438-y

NVM Streaker: a fast and reconfigurable performance
simulator for non-volatile memory-based memory
architecture

Danqi Hu1,2 · Fang Lv1 · Chenxi Wang1,2 ·
Hui-Min Cui1,2 · Lei Wang1 · Ying Liu1 ·
Xiao-Bing Feng1,2

Published online: 2 June 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract The high density, low power consumption non-volatile memory (NVM)
provides a promising DRAM alternative for the in-memory big-data processing appli-
cations, e.g., Spark, It is significant to simulate the behaviorswhenNVMs are deployed
into the area of big-data processing before their widespread use in market. However,
existing simulation approaches are not applicable for big-data processing due to two
reasons. First, some approaches require complicated hardware and/or OS supports.
Second, cycle-level or function-level simulations are too time-consuming to simu-
late the whole software stack of big-data processing. Therefore, the complexity and
expensive time cost in NVM simulation have dramatically dragged down the inte-
grated research of big data with NVM. This paper proposes a fast and reconfigurable
simulation method, called NVM Streaker, which does not need complex hardware
or OS supports. It simulates NVM access costs using disturbed DRAM accesses and
commonly configurable hardware parameters. It is fast since we use DRAM accesses
and change its access costs to simulate NVM access costs, thus enabling to simu-
late the whole software stack to run Spark applications. It is reconfigurable since we
enable users to configure the disturbed memory access costs, in order to simulate dif-

This research is supported by National Key R&D Program of China under Grants Nos.
2016YFB1000402, 2016YFB1000200 and 2016YFB0200504; the NSFC under Grants Nos. 61521092,
61672492, 61303053, 61432016 and 61402445.

B Fang Lv
flv@ict.ac.cn

1 State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China

2 University of Chinese Academy of Sciences, No. 19(A) Yuquan Road,
Shijingshan District, Beijing, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2438-y&domain=pdf
http://orcid.org/0000-0001-9723-9410

3876 D. Hu et al.

ferent NVM access costs. The experimental results show that we can simulate Spark
applications with almost negligible cost and high efficiency.

Keywords NVM · Reconfigurable · Fast simulation · Big data

1 Introduction

The proliferation of big-data applications has raised new challenges for data storage
and processing technologies. The characteristics of high density and low power make
NVM a possible alternative of DRAM to cater for the increasing demands in in-
memory computation of big data. Therefore, the integrated research of big data and
NVM is becoming a promising topic [6, 33, 37, 43].

However, the existingNVMtechniques cannotmeet the needs of big-data researches
directly. Although studies on NVM are at the forefront, the commercial unavailability
of NVM-based memory architecture has dragged down the combination of NVM and
big-data researches. Moreover, the durability of NVM, e.g., the write life problem
[10, 16, 19, 31], makes it hard to sustain high pressure of performance experiments
which further restricts the researches. Therefore, a more helpful simulation technique
for NVM architecture is in pressing need.

The state-of-art researches need better NVM platform simulation methods. Explo-
rations on persistmemory system [34] have thorough considerations forNVM-specific
characteristics. User applications can utilize these techniques with customized inter-
faces for NVM, which impose higher requirements on developers. Architectural-level
NVM simulators [8, 11, 18, 24–26, 28] for physical designs concerned more on
hardware details such as memory cells, transistor size. Some works either relied on
complicated hardware and OS supports [5, 24], or were very time-consuming. Some
simulators or emulators only provided calculation for memory latency or bandwidth
with hardware details without supports for real runtime simulation at all [8, 26, 30].
Therefore, a new simulationmethod forNVM-basedmemory architecture is necessary
to facilitate performance-related big-data researches.

Performance-oriented software researches [39, 40] on NVM always focus on soft-
ware exploitable key characteristics such as longer access costs. In fact, highermemory
costs can be simulated by making good use of the existing supports from mainstream
NUMAservers [23]. NUMAserver has distributedmemory regions. The remotemem-
ory region has longer access costs than the native memory region which make it
adaptive to work as the simulated NVM region naturally. NUMA server has many
tunable parameterswhich can generate evenmore simulatedmemory access costs. Fur-
thermore, the memory access costs can be prolonged bymeans of software-auxiliaried
contentions on the shared memory bandwidth. The contentions are confined inside the
simulated NVM region in order to limit their overheads. All in all, we can realize fast
NVM simulation with the aid of software methods on NUMA servers at acceptable
simulation costs.

In this paper, we propose a fast and reconfigurable simulation method, NVM
Streaker. It works efficiently withmeasuresmentioned in the previous paragraphwhile
without any complicated modifications on the hardware, OS and user applications.

123

NVM Streaker: a fast and reconfigurable performance… 3877

NVM Streaker simulates the longer memory access costs for NVM in two steps. First
it simulates a number of longer memory access costs through configuring the tunable
hardware parameters on NUMA servers. Then, it obtains more simulated values under
the auxiliary of a bandwidth scrambling task named the disturber. The disturber keeps
issuing memory demands into the shared memory bandwidth which conflict with the
memory operations from the user application. The resulting memory conflicts pro-
long the DRAM access costs and lead to higher simulated NVM access costs finally.
Thus, the software disturber can produce a much wider simulation scope for NVM.
For example, on our experimental server, the parameter reconfiguration can produce
simulated NVM access costs in 2.5x–3.2x compared to the native DRAM costs. The
software disturber can widen the range to more than 5.1x. These two measures make
NVM Streaker able to work for performance simulation with low complications and
at acceptable costs.

NVMStreaker devotes to efficient performance simulation for integrated researches
with NVM. Besides the low costs and the low complexity, both the parameter config-
uration and the software disturber endow it a high configurability. User can configure
different NVM environments through adjusting the tunable parameters either in the
server hardware or in the software disturber. In addition, we propose Fast Calculation
for much easier simulation, which needs no real simulation executions at all. Both the
carefully designed NVM Streaker, and Fast Calculation can support simulations with
efficiency and accuracy.

The contributions of our work are as follows:

• We propose an easily implemented simulation method, NVM Streaker, for NVM-
based memory architectures. It supports key characteristics of NVM including the
higher memory access costs, and the asymmetric costs between read and write
requests while without any sophisticated modifications on hardware, OS and user
applications. NVM Streaker conducts fast simulation by means of hardware param-
eter reconfiguration and a software-auxiliaried disturbing method. NVM Streaker
enables users to configure different NVM environments through adjusting the tun-
able parameters either in the server hardware or in the software disturber.

• We propose an even faster method based on NVM Streaker which is named Fast
Calculation. It can simulate NVM environment accurately and more conveniently
via calculation, while saving the simulated execution process (without execution).

• NVM Streaker is able to work for performance simulation or analysis with high
accuracy. Experiments with Spark benchmarks verify NVM Streaker’s low time
costs (almost negligible), the high accuracy, and convenience in reconfiguration in
the meantime.

The rest of the paper is organized as follows: Sect. 2 presents the implementation of
our simulator, NVMStreaker. Section 3 details the key design of necessary parameters
for the simulator. Section 4 details the key design for the disturbing tasks used in the
simulator. Experiments and evaluations are discussed in Sect. 5. Section 6 discusses
the related work. Section 7 draws the conclusion and discusses the future work.

123

3878 D. Hu et al.

2 NVM Streaker: a fast and reconfigurable simulation method

NVM Streaker is a performance simulator for NVM architecture. It supports key
characteristics of NVMs, including its higher memory access cost and asymmetric
memory cost between read and write operations. It aims at efficient simulation at
acceptable time cost, with high configurability, and low complexity.

In order to achieve the above objectives, the key point of NVM Streaker is to
limit its simulation on memory operations while without influences on other unrelated
operations or function units. This idea can lead to low complexity and low time costs
directly.

NVM Streaker is designed as a cooperated method between a parameter layer and
a software disturber. These parts jointly contribute to the simulated NVM perfor-
mance for user applications. First, the parameter layer produces several simulated
NVM access costs via tuning the adjustable hardware parameters of the server. The
server configured with different hardware parameters works as different NVM envi-
ronments. User applications can run under these simulated environments directly.
However, these discrete values are insufficient for thorough performance simula-
tion and analysis. Hence, a software disturber is used to further delay the memory
access costs for more NVM environments. The disturber keeps competing for the
shared memory bandwidth with the user application by launching memory opera-
tions constantly. Under this way, all target memory operations from user applications
are interfered, prolonged, and evolve into the simulated NVM access costs finally.
With these design details, NVM Streaker can efficiently limit its simulation costs and
complexity.

2.1 The framework of NVM Streaker

Figure 1 illustrates the framework of NVM Streaker. It is a two-layer design which
includes a parameter layer and a software disturber. User applications can achieve their
desired NVM simulation performance under the joint effects of these two parts. NVM
Streaker can be built on any mainstream NUMA servers. On such kind of memory
architecture, the memory spaces are classified into the native region and the remote
region naturally. For a user application which is launched on CPU0, the remote region
always has relatively higher memory access costs than the native region. Therefore,
in our work, we use the remote region as the simulated NVM region. All simulated
access costs for NVM are measured inside this region.

The parameter layer simulates NVM via parameter configurations on the hard-
ware. Most of the servers provide some adjustable parameters which include the CPU
frequency, the memory frequency and the memory channel number. Variations
in these parameters lead to different simulated memory access costs at much lower
simulation time costs than architecture-level simulators.

The software disturber further widens the simulated scope for NVM access costs
bymeans of the memory disturbingmechanism. As shown in Fig. 2, the memory oper-
ations to be simulated from user applications which are launched on CPU0 are placed
in the simulated NVM region. The software disturber on CPU1 keeps launching mem-

123

NVM Streaker: a fast and reconfigurable performance… 3879

Fig. 1 Framework of NVM Streaker

Fig. 2 The software disturber of NVM Streaker

ory operations constantly into this simulated NVM region either. Both the disturber
and the user applications compete for the shared memory bandwidth as the annotation
box refers to. The resulting memory conflicts lead to prolonged memory access costs
for all memory operations, which are treated as the simulated NVM access costs for
user applications. Through tuning the memory bandwidth of the software disturber,
different NVM access costs can be produced.

From this mechanism, we can see that NVM Streaker’s fast simulation is ensured
by the jointly cooperated layers. This advantage can be clarified by the above designs:

• NVMStreaker works via direct running on real servers, neither on cycle-level simu-
lators or function-level simulators, nor on FPGA simulators. These characters make
it easy to apply and more time-saving.

• The parameter layer works through the parameter reconfiguration which has almost
negligible simulation costs.

123

3880 D. Hu et al.

• The software disturber limits its influences on the simulated memory operations,
while without interferences on other type of operations. Variations on the perfor-
mance can be contributed to the simulated memory operations. This makes it more
efficient for any further performance analysis.

Another advantage of NVM Streaker is that it is highly reconfigurable. It can con-
figure the simulated environment flexibly via the hardware parameter configuration.
Moreover, more simulated environments can be set up through tuning the disturbance
degree of the software disturber.

2.2 The evaluation matrix with NVM Streaker

Different to architecture-level simulators or other hardware simulators, it is difficult for
NVM Streaker to differentiate read and write operations. It cannot produce explicit
latency for read and write operation. It is also not our desired way to insert delays
precisely after every memory operations since it is time-consuming. In our work, we
use a synthesized performance index, the average memory access cost (AMAC),
to quantify and depict the simulated memory access costs for NVM Streaker. This
index depicts the average access costs for both read and write operations. It is the
total main-memory access number divides the total time cost to finish those accesses
under the simulated NVM environment. More design details in our later work illu-
minate that it is sensitive to the diversified memory characteristics of applications
and it is qualified for performance simulation for performance-oriented software
researches.

AMAC can work for performance simulation and evaluation. AMAC is calculated
directly, which is dividing the total access time cost by the total main-memory access
number. On the contrary, for applications with implicit quantity ofmemory operations,
we analyze the application via the simulated performance, i.e., the whole runtime in
simulation.

NVMStreaker is helpful for performance-oriented software researches. It can facil-
itate the performance analysis via variations on AMAC or on performance. Through
contrasting the variations with and without optimizations, the researchers can obtain
information about their innovated techniques.

3 Detailed design of the parameter layer

Parameter configuration on the hardware is always an ideal simulation method for
performance-oriented researches. They can complete the simulation process at very
low time costs. NVM Streaker is built on mainstream servers with NUMA supports.
Naturally, the distributed memory spaces can work as DRAM regions and NVM
regions, respectively. Moreover, mainstream architectures always provide certain tun-
able parameters. Among them, the CPU frequency, the memory frequency and the
memory channel number are three of the tunable parameters which relate closely to
the memory access cost. The parameter layer can produce a number of memory access
costs through tuning these parameters.

123

NVM Streaker: a fast and reconfigurable performance… 3881

Although the CPU frequency influences the whole applications, for memory-
intensive applications which we focus on, this parameter is useful to produce much
higher memory access costs for NVM simulation. The two parameters of the memory
frequency and the memory channel can affect the memory costs directly without side
effects on other types of operations. These three parameters cooperate to influence all
memory operations.

The parameter layer implements a fast performance simulation. The way it works
can influence the execution time of the user application directly while without lengthy
expenses as from traditional cycle-level simulators, trace-level or function-level simu-
lators. Moreover, these adjustable parameters make NVM Streaker reconfigurable for
NVM environments with different access costs.

3.1 Environmental description

To be clarity, we define the hardware working circumstance with the above three
adjustable parameters as 〈CPU,MEM,CH〉. CPU and MEM stand for the work-
ing frequencies of the architecture. CH stands for the memory channel number
in the working machine. We use DRAM〈CPU,MEM,CH〉 and NVM〈CPU,MEM,CH〉 to
distinct the working environment between the DRAM region and the simulated
NVM region, respectively. Thus, the working circumstance is determined with vector
[DRAM〈CPU,MEM,CH〉,NVM〈CPU,MEM,CH〉]. More details about our platform can be
found in Sect. 5.

3.2 Limitation of the parameter layer

The major inefficiency of the parameter layer is that it has very narrow simulation
scope. The parameter layer is constructed on a few discrete hardware circumstance
parameters, which lead to few simulated NVM costs. These finite values are not
qualified for thorough performance analysis. Thus, the configurability is very limited.
Hence, a better methodwithmuchwider simulation scope is necessary for the big-data
researches on NVM-based memory architectures.

4 Detailed design of the software disturber

The software disturber plays a key role for the NVM simulation. It adopts a disturb-
ing mechanism to enhance the simulation capability for NVM Streaker. Under this
mechanism, an application co-runs with a series of disturbers. The obtained memory
access costs of the application are treated as the average memory access costs (the
AMAC introduced in Sect. 2.2) for NVM. Different combinations between the appli-
cation and the disturber lead to different AMAC. This mechanism illuminates that the
simulated AMAC values for an application cannot be determined by any single party.
They are determined by both the co-running disturber and the co-running application
concurrently.

123

3882 D. Hu et al.

Fig. 3 Illustration for the common-decision principle of NVM Streaker. Different co-runner combinations
lead to different simulated AMAC values

Figure 3 illustrates the common-decision principle of the disturbing mechanism,
i.e., different co-runner combinations can lead to different simulatedAMAC forNVM.
In the figure, two tasks with different memory properties produce two groups of mem-
ory access costs which form the two curves when co-running with the same group
of disturber tasks. The two sample applications have the same LLC miss rate, while
different read–write miss rates, 10% write miss rate (in red) and 50% write miss rate
(in blue), respectively. The task in the blue curve can simulate in 3.3x–7.4x AMAC
normalized to the native DRAM cost, while the task in the read curve can simulate
in a narrower scope of 2.4x–4.9x. Variations in the co-running combinations for the
same task can lead to different simulated AMAC for NVM. For the task with 50%
write rate, it can obtain 3.5x AMAC through co-running with a disturbing task with
memory bandwidth of 43 M/s. It can obtain 6.3x AMAC that of DRAM through co-
running with a disturbing task with memory bandwidth of 153 M/s. Therefore, for a
given application, NVM Streaker can obtain unique AMAC or performance through
co-running it with a disturber with specified memory property.

In order to quantify and depict all simulated AMAC values for NVM, we need a
series of disturbers to generate different degrees of disturbing memory operations
which aid for various memory access costs. Besides this kind of tasks, we need a
series of tasks as representative samples, named the imitator, to imitate user appli-
cations’ memory properties. We collect all possible simulated AMAC values through
co-running each of these sample tasks with all disturbers. All these AMAC values
can be treated as the possible simulated NVM access costs with NVM Streaker. For
any new application, we can set up the simulated environment in accordance with
its most similar imitator task. Thus, the new application can obtain designated NVM
environments through proper combinations with disturbers. This is the basic idea of
the software disturber.

The mechanism of NVM Streaker determines that it is very important to ensure
of the accuracy of simulator. The imitators should be as analogous as possible to
represent real applications. Thus, a user application can obtain consistent simulation
results with its most similar imitator. This means that through observation the gap
between the simulated AMAC values from the user application and its most similar
imitator, we can make a judge on the accuracy of NVM Streaker.

123

NVM Streaker: a fast and reconfigurable performance… 3883

4.1 Kernel designs in the software disturber

In order to obtain the disturber set and the imitator set, a training process is adopted in
our work. The training process helps to establish both the disturbers and the imitators
while eliminating those who act similarly. Finally, we can obtain a set of disturbers
which produce competing memory demands evenly at different speeds. And we can
obtain a set of imitators which present high performance sensitivity to different dis-
turbers.

4.1.1 The kernel design for the disturber and the imitator

NVMhas some recognized key performance-related characteristics which are covered
in most of the researches, such as longer access latency especially slow writes [34],
and the asymmetric costs between read and write request. We support both of these
two features in our kernel design.

Real-user applications are diversified. The differences in the thread number, the
memory bandwidth, and the read–write miss ratio, etc., all lead to diversified memory
behaviors. In order to support the diversified memory behavior for real applications,
we take the above key factors in the kernel design for both of the disturber and the
imitator. The kernel includes adjustable memory properties. Through tuning the miss
rate of the last level cache (LLC), asymmetric read–writemiss rate, and thread number,
tasks with different memory behaviors can be generated for training.

The kernel of the disturber Figure 4 demonstrates the disturber’s kernel. The kernel’s
design is a commonly used benchmark for memory bandwidth, which is similar to the
bubble’s design [21, 44]. It adopts three important features for fine-grained bandwidth
tuning: (1) regular memory accesses specified by Line 13; (2) configurable memory
bandwidth specified by variables of NOP and STRIDE; (3) uniformly continuous
memory behavior. It is worth to mention that the main mission of the disturbing task
is to generate memory conflicts, which are either from read operations or write oper-
ations. For simplicity, we limit the operation type to read only. Besides, all disturbers
are designed with full-loaded threads (6 threads on our 6-core/CPU server).

All disturbers are defined within a set Dis_Set :
{
D1, . . . , Dp

}
. Each Di specifies

the memory bandwidth at which this disturber keeps launching evenly. As the kernel’s
memory demands dial up from D1 to Dp, the memory bandwidth demands increase
monotonically. In the process of dialing up from D1 to Dp ascendingly, we measure
the AMAC of the co-running imitator task. The acquired AMAC values stand for the
simulated memory costs for different NVM environments.

The kernel of the imitator Due to the diversified properties as mentioned above, user
applications always behave differently and present different performance during co-
running with different disturbers. NVM Streaker uses imitators to imitate different
user applications. Key properties including the LLC miss rate, the read–write miss
rate, and the thread number are included in the design of imitator tasks.

Figure 5 demonstrates the imitator’s kernel design. It uses the variable
NUM_THREADS to control the number of concurrent threads in the imitator or

123

3884 D. Hu et al.

Fig. 4 The kernel of the
disturber

the user task. It uses several memory-related variables to adjust the memory behavior.
These variables can make them flexibly configured for a variety of tasks with various
memory behaviors.

In the figure, the variableMEM_PER_ITER specifiesmemory operations in every
iteration. Almost every memory operation in the kernel can lead to a cache miss. The
variable NOP and STRIDE can control the memory bandwidth. They can switch
the training kernel from memory-intensive type to less memory-intensive one. The
read–write miss rate can be tuned via the variable of WR. All imitators are designed
with a set Eval_Set:

{
WR0,WR1, . . . ,WRq

}
, while WR j stands for the proportion

of write misses of a kernel, which is between 0 and 100%. For example, WR j of 25%
represents that write misses occupy 25% of all cache misses. The imitators in the set
have ascending write miss ratios.

With the above variables, we generate three kinds of imitators which have different
memory behaviors for our investigation:

• Memory-intensive imitator: It represents memory-intensive applications which are
full of LLC misses. They are developed from a memory-intensive imitator kernel
withmaximumcachemiss rate, i.e., almost everymemory access encounters a cache
miss.

• Less memory-intensive imitator: It represents less memory-intensive applications
which have relatively less LLCmisses. They are created through tuning the variable
of NOP and STRIDE in the imitator kernel.

• Imitator with variable number of threads: It represents applications with variable
thread number.

123

NVM Streaker: a fast and reconfigurable performance… 3885

Fig. 5 The kernel of the imitator

In the following subsections, we will study the impacts on NVM AMAC in detail
with these three kinds of imitators.

4.1.2 The training process

The training process is to (1) establish a set of disturbers which produces various
degrees of interference and leads to different simulated memory access costs for user
applications, (2) establish a set of imitators which has different memory properties
and present distinct memory access costs under different memory contentions, and (3)
guild the user application to construct their designated simulation environment.

In the training process, each disturber Di inDis_Set can produce a certain degree of
interference. Each imitatorWR j can present different AMAC values when co-running
with a disturber Di . All AMAC values form a performance curve for each imitator
after co-running with all disturbers. Thus, the training process can produce p × q
groups of latency curves for all the disturbers and the imitators. With all these curves,
we carefully eliminate some unqualified tasks which have similar performance with
others, and select out n disturbers to form the final Dis_Set : {D1, . . . , Dn} and m
imitators to form the final Eval_Set : {WR1, . . . ,WRm}. The tasks in these two sets
can show distinct AMAC (performance) during the training process.

123

3886 D. Hu et al.

Training with memory-intensive imitators Figure 6 demonstrates the training pro-
cess for the disturbers with memory-intensive imitators. During the training process,
all memory conflicts are triggered inside the simulated NVM region. Experiments
from (a)–(f) are collected under 6 different hardware parameter configurations. In
each figure, 11 memory-intensive imitators with write miss ratios ranging from 0 to
100% are adopted. They are developed from the memory-intensive imitator kernel
with maximum cache miss rate. More than 20 disturbers are involved in the eval-
uation process. X-axis stands for the variable NOP which is used to control the
disturbing task’s memory bandwidth demands. The descending of NOP value can
produce ascending memory bandwidth. Y -axis stands for the normalized simulated
NVM AMAC to the native DRAM. Consider Fig. 6a for example, under the con-
figuration of [DRAM〈2.67,1.33,3〉, NVM〈2.67,1.33,1〉, the hardware parameter layer can
produce simulated NVM access costs ranging from 2.5x–3.2x. The software disturber
with 240 nops per iteration can further widen the range up to 5.1x as the arrow denotes.
However, it should be pointed out that in order to obtain stable data, those disturbers
and imitators which fluctuate severely will not be adopted and are eliminated from the
training process.

From these figures, we can observe that experiments under different hardware
parameters have a similar trend: an ideal, stable and monotone AMAC curve for each
imitator. This means that for every imitator, the disturbers can produce simulated
memory access costs ascendingly when ranging the variable of NOP from 900 to 60.
This is a common phenomenon which applies to all the 6 hardware configurations.

Trainingwith lessmemory-intensive imitators WemeasureAMACfromanother point
of view with less memory-intensive imitators. For clarity, we choose three kinds of
kernels with WR of 0, 50% and 100%, respectively. We develop several less memory-
intensive tasks from these three kernels through tuning the variable of NOP in the
kernel. Thus, a series of imitators with ascending memory bandwidth demands can be
created.

Figure 7 demonstrates that experiments with less memory-intensive tasks still can
follow the similar rulewith thememory-intensive tasks.A stable andmonotoneAMAC
curve for each imitator can be formed. In each figure, 11 imitators with descending
LLC misses per cycle (17,902–52 LLC misses per 106 cycles) are adopted. These
tasks are created with ascending NOP which ranges from 0 to 300. X-axis stands for
the same disturbers as in Fig. 6. Y -axis stands for the simulated AMAC normalized to
that on native DRAM for 11 imitators. Experiments show that, similar to the memory-
intensive reports, lessmemory-intensive imitators also can react differently to the same
group of disturbers. We can observe an ideal, stable and monotone AMAC curve for
each imitator when the variable of NOP in the disturbers ranges from 900 to 60.

Training with imitators of variable thread number We take the thread number into
the design of the imitator. For an application, the variation in the thread number can
exert distinct influences on the AMAC values.

Figure 8 demonstrates the experiments with thread numbers of 1-thread, 2-thread
and 6-thread, respectively. Experiments from (a)–(c) are conducted with three kinds
imitators. Each figure includes imitators extended fromWRof 0, 50 and 100%, respec-

123

NVM Streaker: a fast and reconfigurable performance… 3887

Fig. 6 Training process with memory-intensive evaluation tasks under 6 hardware parameter config-
urations. a Training process under [DRAM〈2.67,1.33,3〉,NVM〈2.67,1.33,1〉], b training process under
[DRAM〈2.67,0.8,3〉,NVM〈2.67,0.8,1〉], c training process under [DRAM〈2.13,1.33,3〉,NVM〈2.13,1.33,1〉],
d training process under [DRAM〈2.13,0.8,3〉,NVM〈2.13,0.8,1〉], e training process under
[DRAM〈1.6,1.33,3〉,NVM〈1.6,1.33,1〉], f training process under [DRAM〈1.6,0.8,3〉,NVM〈1.6,0.8,1〉]

tively. The relation between thread number and the AMAC can be observed in these
figures.

In each figure, x-axis stands for a group of disturbing tasks with ascending memory
bandwidth demands. Y -axis stands for the AMAC of imitators normalized to that on
native DRAM latency. From the figures, we can observe similar trends. The thread
number does relate closely to the memory access costs of the imitators under the
co-running mechanism. For the same imitator, the higher the thread number is, the
higher the normalized value is. As the circle in Fig. 8a denotes, when co-running
with the disturber of 900 nops, the normalized AMAC value of the 6-thread imitator

123

3888 D. Hu et al.

Fig. 7 Training process with less memory-intensive imitators. a Training process with imitators developed
from WR�0%, b training process with imitators developed from WR�50%, c training process with
imitators developed from WR�100%

is 2.22. The normalized AMAC value of the 1-thread imitator is only 1.62. This is
because that the higher the thread number is, the higher the memory bandwidth is.
The increased demands from the imitator intensify the memory conflicts, which lead
to higher AMAC.

Experiments with thread number show that the number of threads of the imitator
will have its influences on the AMAC values. We still can observe an ideal, stable and

123

NVM Streaker: a fast and reconfigurable performance… 3889

Fig. 8 Training process with variable thread number. a Training process with imitators developed from
WR�0%, b training process with imitators developed from WR�50%, c training process with imitators
developed from WR�100%

monotone AMAC curve for each imitator when the variable of NOP in the disturbers
ranges from 900 to 60.

Conclusion Common observations in the above experiments show that users canmake
good use of NVM Streaker in the following two aspects:

123

3890 D. Hu et al.

Table 1 Key factors in the training process

Factors Co-runners

Co-running tasks Imitator task on CPU0 Disturber task on CPU1

Read miss rate of LLC RLLC0 RLLC1

Write miss rate of LLC WLLC0 –

Thread number TH0 TH1 �6

On the one hand, the findings with both memory-intensive imitators and less
memory-intensive imitators indicate how to build the simulation environment for
user applications. We can create a designated NVM simulation environment for an
imitator through proper combination between the disturber and this imitator task.
For a given user application, we can pick out its most similar imitator task which
have similar memory properties. Thenwe can establish designated NVM simulation
environment through proper combination between this imitator and the disturbers.
This is the basic idea to guide simulation for real-user tasks with the software
disturber.
On the other hand, users can obtain useful information about their new optimizations
on futureNVMarchitectures. Through contrasts between datawith andwithout their
new optimizations under certain simulated environment, users can know whether
the new techniques are beneficial.

4.2 Fast Calculation based on NVM Streaker

The software disturber can facilitate the NVM simulation for real applications. How-
ever, we still need to arrange the co-running execution between the user application
and the disturbers for simulation. In this subsection, we propose an even faster method
named Fast Calculation. This method can simulate via calculation directly without
any execution process. This improves the efficiency of simulation greatly.

Fast Calculation makes a good use of all training results. All experiments results
are gathered and form a relation between the imitators (or the user application) and the
disturbers. The relation formula can be fitted out by somemathematical software, e.g.,
MATLAB [47] in our work. As shown in Table 1, there are 5 necessary parameters
from the two co-runners which include the read miss rate of LLC, write miss rate of
LLC, and thread number of the two co-runners. As for the disturbers, we use full-
loaded memory-read intensive disturbers (which has 6 threads in our environment on
the remote CPU). Thus, we reduce the factor of the disturbing task to RLLC1 only.
Equations (1)–(3) estimate the potential AMAC with the left 4 factors (except TH1),
RLLC0, WLLC0,TH0,RLLC1.

In order to configure a NVM environment, the user needs to specify its memory
property. Here, User_Property is defined as the property of user task or the imitator
as in Eq. (1). It is synthesized from the read miss rate of LLC (RLLC0), the write miss
rate of LLC (WLLC0) and the thread number of the user application (TH0). Constant

123

NVM Streaker: a fast and reconfigurable performance… 3891

factors of a0 and a1 are used to indicate the difference between server machines. All
these constants can be obtained in the process of formula fitting with MATLAB in our
work. Different servers always have different constant factors.

User_Property � a0 · RLLC0

TH0
+ a1 · WLLC0

TH0
(1)

Similar details of another co-runner, the co-running disturber, are also neces-
sary. It is synthesized from the two co-runners’ properties. With these features,
Corun_Proper t y is defined for the specified co-running circumstance as in Eq. (2).
Constant factors of β0, β1, β2 are adopted similarly to those factors in (1).

Corun_Property �
(

β0 · RLLC0

TH0
+ β1 · WLLC0

TH0
+ β2

)
· RLLC1 (2)

After plenty of experiments, we can estimate the simulated AMAC value,
AMACestimated, with Eq. (3). This equation is to estimate the AMAC value with the
given 4 key features of both the two co-runners. Constant factor of δ0 is used in this
equation.

AMACestimated � δ0 + User_Property + Corun_Property (3)

The runtime performance, Pestimated, for a user task is composed of two parts,
the memory-related part and the non-memory-related part. We use ratiomem for the
performance calculation which is the ratio of memory instructions to all instructions.
Pestimated can be estimated with the following equation:

Pestimated � AMACestimated ∗ ratiomem + (1 − ratiomem) (4)

Fast Calculation can estimate the simulated AMAC or performance for given user
applications. Given a particular hardware setting and memory properties of a user
application, the user can configure different simulated environments with various dis-
turbers. Furthermore, it also can help to determine proper disturbers with definite
requirements on AMAC. The user can calculate RLLC1 to obtain a proper disturber
with which to constitute a desired simulation environment.

Both NVM Streaker and Fast Calculation can work efficiently and accurately. In
the following experiment section, we will illustrate the low time costs, low complexity
and high exactness for simulation with NVM Streaker.

5 Experiments and evaluations

In this section, we qualify the efficiency and accuracy for NVM Streaker and Fast
Calculation. Flexible and varied experiments with Spark big-data benchmarks [46]
demonstrate that these methods can work with low complexity, fast simulation speed
and high accuracy. It is efficient to analyze the performance variation for big-data
researches with these methods under the scenario of NVM.

123

3892 D. Hu et al.

There are a wide variety of researches on NVM’s simulations. Specific methods
have significant differences on performance [15, 34]. In this section, evaluations are
designed and conducted from two aspects to demonstrate the low simulation costs and
high accuracy for NVM Streaker.

First, we use real Spark applications to verify the functionality and the accuracy
in performance simulation for NVM Streaker. Based on the design concept, a user
application should obtain similar AMAC values or performance values to their most
similar imitators during co-running with disturber set. Our experiments with Spark
certify that NVM Streaker can lead to similar performance with the average error rate
ranging from 2.3–8.8% (Sect. 5.3).

Second, we contrast between real execution results with NVM Streaker and the
estimated results with Fast Calculation for these applications. Evaluations illustrate
that the simulation methods with these two methods are highly consistent (the average
error rate is about 3.6%). Both these twomethods canwork for performance simulation
on NVM efficiently (Sect. 5.4).

Moreover, we contrast the simulation costs between NVM Streaker and a well-
known cycle-level simulator, GEM5+DRAMSim2 [48, 49] to show its low overheads
(Sect. 5.5).

5.1 Platform

NVM Streaker is based on a dual-socket, 12-core Intel® Xeon® X5650 server.
Prefetching is disabled. Each CPU supports three DDR3 channels. The server has
a total of 32 GB memory, which is divided equally between CPUs initially. On
this server, there are 10 CPU frequency levels, 2 memory frequency levels and 3
memory channel levels. Based on observations in Sect. 4.1.1, experiments under
each parameter configuration follow the common rules. In this section, we choose[
DRAM〈2.67,1.33,3〉,NVM〈2.67,1.33,1〉] as our platform for evaluations with Spark
benchmarks.

5.2 Benchmarks and matrix for accuracy

We evaluate NVM Streaker with three Spark benchmarks [46]. As listed in Table 2,
PageRank is a popular algorithm forwebsite. BFS is one of themost popular algorithms
for graph or tree traversing. CC is an algorithm to compute the connection. NVM
Streaker is evaluated from two aspects, either different size of data input or periodical
behavior (kernel time or full execution time). In this subsection, the default runtime
configurations for Spark benchmarks are adopted. All the measured AMAC values
are normalized to the native DRAM access costs. We use 3 graphs, dolphins.txt,
diseasome.txt and p2p-nutella30.txt, as the original data set for our experiments as in
Table 2. We develop a group of inputs which may be different either in the data size
or in the vertex from these 3 graphs. Consider BFS in Table 2, for example, B_Data1

and B_Data2 stand for two graphs which have the same size of 300M while different
vertex data. For each benchmark, we experiment with 2–3 different inputs because

123

NVM Streaker: a fast and reconfigurable performance… 3893

Table 2 Benchmarks for qualification of NVM Streaker

Benchmarks Description Test type Original graph Data input

PageRank It is a way of
measuring the
importance of
website pages by
counting the
number and
quality of links
to a page.

Kernel execution
Full execution

Dolphins.txt
Graph: 〈62 node,
318 edge〉

P_Data0

P_Data1

BFS It is an algorithm
for traversing or
searching tree or
graph data
structures.

Full execution Diseasome.txt
Graph: 〈1419node,
3926edge〉

B_Data0 (160 M)
B_Data1 (300 M)
B_Data2 (300 M)

CC It is an algorithm
to compute the
connected
components.

Full execution p2p-nutella30.txt
Graph: 〈6682node,
88328edge〉

C_Data0 (160 M)
C_Data1 (300 M)
C_Data2 (300 M)

these applications present different behaviors when the data input varies, i.e., different
graphs lead to different performance.

As to experiments with NVM Streaker, we measure AMACsimulated and Psimulated
for applications. These two values are obtained through real execution with NVM
Streaker.

As to Fast Calculation,wemeasureAMACestimated and Pestimated which are obtained
through calculation with Eqs. (3) and (4).

The accuracy of NVM Streaker is certified through contrasts between Psimulated
values of training sets and real benchmarks. As we mentioned in previous Sect. 2.2,
for big-data applications, we use Eq. (5) for error calculation since it is difficult to
separate memory instructions from other instructions. As shown in Eq. (5), for a Spark
benchmark,Pspark

simulated is the normalized performance of Spark benchmark. P imitator
simulated is

the normalized value of the imitator which has the most similar memory property to
the Spark benchmark. The contrasts are made with error as in Eq. (5), which is also a
common method in many works such as in [27].

error (x) �
∣∣∣P imitator

simulated − Pspark
simulated

∣∣∣

Pspark
simulated

(5)

The accuracy of Fast Calculation is certified through contrasts between NVM
Streaker and Fast Calculation. The contrasts are made with error as in Eq. (6):

error (x) � |AMACestimated − AMACsimulated|
AMACsimulated

(6)

123

3894 D. Hu et al.

Fig. 9 Evaluation contrast between the Spark benchmarks and the most similar imitators for the accuracy
of NVM Streaker. a Full execution of PageRank with P_Data0, b BFS with input of B_Data1, c CC with
input of C_Data1

Similar to Eq. (5), we use Eq. (7) for the accuracy of Fast Calculation for big-data
applications. It is the error rate between the simulated value with NVM Streaker and
the estimated value with Fast Calculation.

error (x) �
∣∣∣Pspark

estimated − Pspark
simulated

∣∣∣

Pspark
simulated

(7)

5.3 Evaluations for NVM Streaker

In this subsection, we contrast the performance between the Spark benchmark and
its most similar imitator task. All experiments are conducted under the hardware
environment of

[
DRAM〈2.67,1.33,3〉,NVM〈2.67,1.33,1〉]. In these processes, the accuracy

of NVM Streaker can be illuminated by the gap (the error rate) between Psimulated
of these two kinds of tasks. For example, we can obtain a performance curve for
PageRank after co-running it with the disturber set. Then we compare this curve with
that of the imitator which has the most similar memory behaviors with PageRank.
The consistency of these two curves determines the accuracy of NVM Streaker, i.e.,
whether user can build simulated NVM environment according to its most similar
imitator.

Figure 9 illustrates the contrasts between the Spark benchmarks and their most
similar imitators. In these experiments, the Spark benchmarks and their most similar
imitators are set to 12-thread with hyperthread. Experiments certificate the feasibility
of constructing NVM environment with the most similar imitator of an application. In
each figure of Fig. 9, x-axis stands for all disturbers in the co-running process. Y -axis
stands for the normalized Psimulated to the DRAM performance. More specifically, the
blue curve stands for the normalized P imitator

simulated during co-running with all disturbers as

x-axis shows. The green curve stands for the normalized Pspark
simulated during co-running

with all disturbers.
In Fig. 9a, the full execution of PageRank with P_Data0 has a LLC of about 0.3%,

while WR is about 25%. Its most similar imitator task has a LLC of about 0.3%, while
WR is about 30%. We can observe that the simulation results of the PageRank are

123

NVM Streaker: a fast and reconfigurable performance… 3895

Fig. 10 Extra evaluation contrasts between the Spark benchmarks and the most similar imitators with
different data inputs for the accuracy of NVM Streaker. a Full execution of PageRank with P_Data1, b BFS
with input of B_Data2, c CC with input of C_Data2

consistent with those of its most similar imitator. The average error rate is about 3.0%.
In Fig. 9b, BFS with input of BFS_Data1 has a LLC of about 0.3%, while WR is
about 17%. Its most similar imitator task has a LLC of about 0.3%, while WR is about
15%. The average error rate is about 2.3%. In Fig. 9c, CC with input of CC_Data1

has similar performance to BFS. It has a LLC of about 0.3%, while WR is about 17%.
Its most similar imitator task has a LLC of about 0.3%, while WR is about 15%. The
average error rate is about 2.3%.

For many graph-dealing applications such as the Spark benchmarks in our work,
different graph inputs can lead to distinct program behavior. We carry out an extra set
of experiments to certify the accuracy of NVM Streaker with another set of data input
set. These sets have the same size, e.g., still 300M for BFS and CC, while different data
for all these Spark benchmarks as in Fig. 9. Figure 10 demonstrates these extended
experiments. In Fig. 10a, the full execution of PageRank with P_Data1 has a LLC of
about 0.3%, while WR is about 33%. Its most similar imitator task has a LLC of about
0.3%, while WR is about 37%. The average error rate is about 4.9%. In Fig. 10b, BFS
with input of BFS_Data2 has a LLC of about 0.3%, while WR is about 21%. Its most
similar imitator task has a LLC of about 0.3%, while WR is about 23%. The average
error rate is about 7.4%. In Fig. 10c, CC with input of CC_Data2 has a LLC of about
0.3%, whileWR is about 21%. Its most similar imitator task has a LLC of about 0.3%,
while WR is about 23%. The average error rate is about 8.8%.

The consistency in the performance curves of the Spark benchmarks and their
most similar imitators shows that NVM Streaker is reliable for NVM simulation. It
is feasible to build NVM environment according to a user application’s most similar
imitator. We also observed that, for each different servers, the appropriacy of both
the imitator set and the disturber set decide the accuracy of NVM Streak. We will
continue to improve and refine the imitator set for more accurate simulation in our
future work.

123

3896 D. Hu et al.

Fig. 11 Contrast between the executed data and the estimated data

5.4 Evaluations for Fast Calculation based on NVM Streaker

In this subsection,we certify the accuracy of Fast Calculation through contrast between
NVM Streaker and Fast Calculation.

Fast Calculation devotes to a much faster and easier way for NVM simulation. As
introduced in Sect. 4.2, it is an estimation equation for AMAC or performance formed
from all the training results on a server. We carry our evaluation experiments under
the hardware environment of

[
DRAM〈2.67,1.33,3〉,NVM〈2.67,1.33,1〉]. Equation (8) is

extracted from the training process introduced in Sect. 4.1.2:

(8)

AMACestimated � 3.829 +

(
−0.164 · RLLC0

TH0
− 0.166 · WLLC0

TH0

)

+

(
−0.047 · RLLC0

TH0
− 0.052 · WLLC0

TH0
+ 0.72

)
· RLLC1

With thorough training process, Fast Calculation can work as accurately as NVM
Streaker. It is more efficient because it does not require real execution process. Fig-
ure 11 contrasts AMACsimulated and AMACestimated between NVM Streaker and Fast
Calculation with all disturbers and imitators which are introduced in Sect. 4.1.1. We
collect thousands of experiment data in the figure as x-axis shows. The blue curve
stands for all AMACsimulated with NVM Streaker. The green curve stands for all
AMACestimated with Eq. (8) of Fast Calculation. In the figure, data are separated into
two regions according to the degree of LLCmiss rate as discussed in Sect. 4.1.1.2. We
can observe that the average error rate between NVM Streaker and Fast Calculation is
about 3.6% (ranging from 0 to 20%). Both these method can work well.With thorough
consideration on the training process, the estimation method of Fast Calculation can
meet the research requirements efficiently without real execution process.

Figure 11 also demonstrates the simulation scope in our work. All the experiments
show thatAMACranges from1.4x to 4.3x for bothNVMStreaker andFastCalculation.

We apply the contrast experiment on big-data Spark applications with TH0 �12.
Figure 12 contrasts Psimulated and Pestimated between NVM Streaker and Fast Calcu-

123

NVM Streaker: a fast and reconfigurable performance… 3897

Fig. 12 Contrasts between NVM Streaker and Fast Calculation with Spark benchmarks. a Full execution
of PageRank with P_Data0, b Kernel stage of PageRank with P_Data0, c BFS with input of BFS_Data0, d
BFS with input of BFS_Data1, e CC with input of CC_Data0, f CC with input of CC_Data1

lation for PageRank, BFS and CC. In each figure, the blue curve stands for Psimulated
values and the green curve stands for the Pestimated values. Each benchmark is inves-
tigated from two aspects as listed in Table 2.

Figure 12a, b demonstrates the contrasts between Psimulated and Pestimated for PageR-
ank. Figure 12a shows the contrast for the full execution time with input of P_Data0.
Among all memory operations, the WR is about 33%. The PPageRank

simulated ranges from

1.102 to 1.167. The PPageRank
estimated ranges from 1.109 to 1.170. The error rate between the

two curves is about 0.9%. Figure 12b shows the contrast for the PageRank kernel stage
time with input of P_Data0. Among all memory operations, the WR is about 17%.
The PPageRank

simulated ranges from 1.111 to 1.204. The PPageRank
estimated ranges from 1.135 to 1.198.

The average error rate is about 0.7%.
Figure 12c, d demonstrates the contrasts with different data set for BFS. Figure 12c

shows the contrast for BFS with input of BFS_Data0. Among all memory operations,

123

3898 D. Hu et al.

Table 3 Contrasts on the simulation costs between NVM Streaker and DRAMSim2

the WR is about 17%. The PBFS
simulated ranges from 1.163 to 1.204. The PBFS

estimated ranges
from 1.162 to 1.273. The error rate between the two curves is about 1.9%. Figure 12d
shows the contrast for BFS with input of BFS_Data1. Among all memory operations,
the WR is about 21%. The PBFS

simulated ranges from 1.260 to 1.350. The PBFS
estimated ranges

from 1.248 to 1.409. The average error rate is about 2.0%.
Figure 12e, f demonstrates the contrasts with different data set for CC which leads

to different memory properties. Figure 12e shows the contrast for BFS with input of
CC_Data0. Among all memory operations, theWR is about 14%. The PCC

simulated ranges
from 1.162 to 1.206. The PCC

estimated ranges from 1.162 to 1.273. The average error rate
is about 2.1%. Figure 12f shows the contrast for CC with input of CC_Data1. Among
all memory operations, the WR is about 21%. The PCC

simulated ranges from 1.272 to
1.370. The PCC

estimated ranges from 1.26 to 1.453. The error rate between the two curves
is about 2.6%.

All the above experiments show that NVM Streaker and Fast Calculation can pro-
duce highly consistent simulation results.With these twomethods, users can configure
the NVM environments flexibly according to their needs. We also observed that these
benchmarks are relatively lessmemory-intensive and they have lowerwritemiss ratios.
We are going for a further study for extending NVM Streaker and Fast Calculation to
more hardware platforms and more big-data applications.

5.5 Extended evaluation on time costs

There are many NVM-based simulators [4, 8, 26, 27]. However, different design
details have significant differences on performance [45]. It is difficult to compare
NVM Streaker with physical design targeted simulators. We illustrate the significant
difference in the simulation costs with a well-known cycle-level simulator, GEM5+
DRAMSim2. Table 3 shows the contrasts between these two simulation techniques.
The details of the benchmark and the input sets are included in the table. Experiments
show that NVM Streaker is much time-saving than the cycle-level simulator, with
almost negligible simulation costs.

6 Related works

NVM in the homogeneous architecture or the hybrid architecture has been explored
in many contexts, e.g., for database [6], for storage system [13, 19, 41, 42], and for

123

NVM Streaker: a fast and reconfigurable performance… 3899

main-memory system [14, 28, 29]. Many work has investigated new materials, SSD
[13, 25, 31] or PCM [14, 15, 24, 28, 29, 45], in performance, capacity and endurance.
However, modeling NVM latency is still challenging because of the diversity and
commercial unavailability of these architectures.

6.1 Simulator techniques

There are various techniques on NVM, such as NVSim [8], NVMain [26, 27], Light-
NVM [4]. These efforts were helpful in the hardware design for different NVMs.With
details ofmemory cells, thesework could calculate or evaluate thememory latency and
bandwidth for the target architecture. Dong et al. [6] proposed a circuit-level model,
NVSim, for NVM performance, energy, and area estimations based on CACTI [38].
Bjorling et al. [4] introduced LightNVM which comprises both a simulated memory-
backed storage for IO and a hardware simulation for accurate NVM timings. Poremba
et al. [26, 27] made a continuous development on the memory simulator of NVMain
which include a thorough consideration for the simulation speed, the sub-array-level
parallelism, the distributed energy profiling. Dulloor et al. proposed a configurable
simulator, PM Emulator [9] and necessary OS management for hybrid memory archi-
tecture.

Some researches relied on specified hardware support. HMEP [20] built their frame-
work with special CPU microcode. HASTE [5] needed four FPGAs, eight memory
controller and significant OS modifications simultaneously. Malicevic et al. [20] pro-
posedHEMP forNVMsimulation. This simulator simulates only the average latencies
and not NVM’s device-specific characteristics. These hardware simulators always tar-
get at specified memory architectures, and lack commercial availability for further
researches. Sengupta et al. [30] implemented a software-based emulation solution
that injects a pre-computed delay in the stream of memory reference to achieve NVM
latency.

6.2 Optimization techniques

Optimizations on NVMs are hot topics for lower power consumption, higher perfor-
mance, and longer lifetime [12, 14, 16, 17, 33–36]. Among all NVMmaterials, PCM is
more competitive in performance and attracts more interests [14, 28, 29, 45]. Qureshi
et al. [28] proposed a hybrid main-memory organization corresponding optimizations
for both performance and longer endurance. It was among the first architectural study
that proposes and evaluates PCM for main-memory systems. In their later work [29],
the researches improved their work on the problem of longer write latency. Lee et al.
[14] proposed architectural enhancements for using PCMas aDRAMalternative. This
work dipped into the optimizations on write operations via PCM buffer organizations
and partial write. Dhiman et al. [7] proposed a hybrid PCM and DRAMmain-memory
architecture. This work focused on reduction of the energy consumption. Zhou et al.
[45] devoted to enhance the endurance of PCM with two optimizations on writes,
redundant bit-writes and wear leveling, which can dramatically extend the lifetime of
PCM.

123

3900 D. Hu et al.

Tseng et al. [32] and Hu et al. [10] made a series effort on reduction on the memory
accesses costs. They proposed an ILP formulation optimization and a heuristic-guided
concatenation scheduling method for NVM architectures which can reduce the high
NVM access costs. In their later work [10], they further reduced unnecessary writ-
ing operations through reasonable scheduling, and data recomputation, etc. All these
methods need to analyze the specific situation of the program at compile time, and
software controllable cache.

Malicevic et al. [16] focused on the replaceability of NVM to DRAM. They
investigated NVM in meeting the memory demands of graph analytics frameworks
on HEMP. Agarwal et al. [3] studied the BW maximizing page placement policies
for hybrid memory system which are composed of CPU memory and GPU mem-
ory.

The development of NVM has stimulated the researches in system software sup-
ports. The work in [22] had foreseen the key issues which the hybrid memory system
brings. It has primarily explored the necessary supports from the operating sys-
tem for NVM, which included basic hardware and software designs, page type, file
type.

6.3 Memory management techniques

Persistent memory (PM) system, storage-class memory (SCM) and persistent lan-
guages focus more new management techniques in order to realize data object
persistence [34], or language level persistence [1–3, 5]. User applications can uti-
lize these techniques through customized interfaces for NVM, which impose higher
requirements on developers. Wang et al. [35] were one of the forward-looking
efforts which have devoted to compiler optimizations for hybrid memory architec-
tures. They proposed more reasonable memory management strategies for better
data layout. NVM Streaker worked as one of the experimental platforms in their
researches.

For any research with NVM, it is important to simulate and analyze the optimiza-
tions in a feasible way. Both the complexity and the exactness are necessary for the
corresponding researches.NVMStreaker canmeet these demands andmake it possible
for the combination research with big-data applications.

7 Conclusions and future work

In this work, we introduce a fast and reconfigurable simulation method, called NVM
Streaker, for NVM-based memory architectures. NVM Streaker can realize a fast
simulation via the direct hardware parameter configuration and a software disturbing
mechanism. Moreover, it has high reconfigurability which enables users to config-
ure various NVM environments according to their needs. Experiments with Spark
applications show that NVM Streaker’s low complexity and high configurability.

The characteristic of low cost makes NVM Streaker competent for performance
analyses in many prospective studies which orient to future hybrid memory archi-
tectures. NVM Streaker still needs a further effort to minimize the error rate for

123

NVM Streaker: a fast and reconfigurable performance… 3901

write-intensive applications. Our next steps include enhancing NVM Streaker for
write-intensive applications, and extending it to more real big-data applications and
more hardware platforms.

References

1. Atkinson MP, Bailey PJ, Chisholm KJ et al (1983) An approach to persistent programming. Computer
Journal 26(4):360–365

2. Atkinson MP, Daynes L, Jordan MJ et al (1996) An orthogonally persistent java. SIGMOD Rec
25(4):68–75

3. Agarwal N, Nellans D, Stephenson M et al (2015) Page placement strategies for GPUs within hetero-
geneous memory systems. In Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ACM, pp 607–618

4. BjÃÿrling M, Madsen J, Bonnet P et al (2014) LightNVM: lightning fast evaluation platform for
non-volatilememories. In: 5th Annual Non-Volatile Memories Workshop

5. Caulfield AM, Coburn J, Mollov T et al (2010) Understanding the impact of emerging non-volatile
memories on high-performance, IO-intensive computing. In: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and Analysis, 13–19
Nov 2010, pp 1–11

6. DeBrabant J, Arulraj J, Pavlo A et al (2014) A prolegomenon on OLTP database systems for non-
volatile memory. In: ADMS@VLDB, pp 57–63

7. Dhiman G, Ayoub R, Rosing T (2009) PDRAM: a hybrid PRAM and DRAM main memory system.
In: Proceedings of the 46th Annual Design Automation Conference (DAC’09), pp 664–669

8. Dong X, Jouppi N, Xie Y (2012) Nvsim: a circuit-level performance, energy, and area model for
emerging nonvolatilememory. In: IEEETransactions onComputer-AidedDesign of IntegratedCircuits
and Systems, pp 994–1007

9. Dulloor SR, Kumar S, Keshavamurthy A et al (2014) System software for persistent memory. In:
Proceedings of EuroSys

10. Hu J, Xue C, Tseng W et al (2010) Minimizing write activities to non-volatile memory via scheduling
and recomputation. In: Proceedings of 2010 IEEE 8th Symposium on Application Specific Processors
(SASP), pp 101–106

11. Hu J, Xue C, Zhuge Q, Tseng WC et al (2011) Towards energy efficient hybrid on-chip scratch pad
memory with nonvolatile memory. In: Proceedings of Design, Automation Test in Europe Conference
and Exhibition (DATE), Mar 2011, pp 1–6

12. Hu J, Xue CJ et al (2012) Scheduling to optimize cache utilization for non-volatile main memories.
In: IEEE Transactions on Computers (TC), Dec 2012

13. Hu X, Eleftherou E, Haas et al R (2009) Write amplification analysis in flash-based solid state drives.
In: Proceedings of SYSTOR 2009: The Israeli Experimental Systems Conference

14. Lee B, Ipek E, Mutlu O et al (2009) Architecting phase change memory as a scalable dram alternative.
In: Proceedings of the 36th International Symposium on Computer Architecture, 2009

15. Lee BC, Ipek E, Mutlu O, Burger D (2007) Architecting phase change memory as a scalable DRAM
alternative. In Proceedings of ISCA 36, June 2007

16. Liu D, Zhong K, Wang T, Wang Y, Shao Z, Sha EHM, Xue J (2016) Durable address translation in
PCM-based flash storage systems. In: IEEE Transactions on Parallel and Distributed Systems (TPDS)

17. Li Q, Zhao Y, Hu J et al (2012) MGC: multiple graph-coloring for non-volatile memory based hybrid
scratchpad memory. In: Proceedings of 16th Workshop on Interaction Between Compilers and Com-
puter Architectures (INTERACT), Feb 2012, pp 17–24

18. Liu T, Zhao Y, Xue C et al (2011) Power-aware variable partitioning for DSPS with hybrid pram
and dram main memory. In: Proceedings of 48th ACM/EDAC/IEEE Design Automation Conference
(DAC), June 2011, pp 405–410

19. Lu Y, Shu J, Zheng W (2013) Extending the lifetime of flash-based storage through reducing write.
In: The 11th USENIX Conference on File and Storage Technologies

123

3902 D. Hu et al.

20. Malicevic J, Dulloor S, Sundaram N et al (2015) Exploiting NVM in large-scale graph analytics. In:
INFLOW’15

21. Mars J, Tang L, Hundt R et al Bubble-up: increasing utilization in modern warehouse scale computers
via sensible co-locations. In: Proceedings of Micro’11, Dec 2011, pp 248–259

22. Mogul JC, Argollo E, Shah M et al (2009) Operating system support for NVM+DRAM hybrid main
memory. In: Hot Topics in Operating Systems

23. Manchanda N, Anand K (2010-05-04) Non-Uniform Memory Access (NUMA). http://cs.nyu.edu/~le
rner/spring10/projects/NUMA.pdf. New York University. Retrieved 27 Jan 2014

24. Mangalagiri P, Sarpatwari K, Yanamandra A et al (2008) A low-power phase change memory based
hybrid cache architecture. In: Proceedings of 18thACMGreat Lakes Symposium onVLSI, pp 395–398

25. Oh Y, Choi J, Lee D et al (2013) Caching less for better performance: balancing cache size and update
cost of flashmemory cache in hybrid storage systems. In: Proceedings of the 10th USENIXConference
on File and Storage Technologies (FAST’12), pp 25–25

26. Poremba M, Xie Y (2012) Nvmain: an architectural-level main memory simulator for emerging non-
volatile memories. In: Proceedings of IEEE Computer Society Annual Symposium on VLSI, Aug
2012, pp 392–397

27. Poremba M, Zhang T, Xie Y (2015) NVMain 2.0: a user-friendly memory simulator to model (non-
)volatile memory systems. Comput Archit Lett 14(2):140–143

28. Qureshi M, Srinivasan V, Rivers JA (2009) Scalable high performance main memory system using
phase-change memory technology. In: Proceedings of the 36th International Symposium on Computer
Architecture, 2009

29. Qureshi MK, Franceschini MM, Lastras-montao LA (2010) Improving read performance of phase
change memories via write cancellation and write pausing. In: Proceedings of 16th International Sym-
posium on High-Performance Computer Architecture, 2010

30. Sengupta D, Wang Q et al (2015) A framework for emulating non-volatile memory systems with
different performance characteristics. In: Proceedings of ICPE’14, 2015

31. Soundararajan G, Prabhakaran V, Balakrishnan M et al (2010) Extending SSD lifetimes with disk-
based write caches. In: Proceedings of the 8th USENIX Conference on File and Storage Technologies
(FAST’10), pp 8–8

32. Tseng W, Xue C, Zhuge Q et al (2010) Optimal scheduling to minimize non-volatile memory access
time with hardware cache. In: Proceedings of 18th IEEE/IFIP VLSI System on Chip Conference
(VLSI-SoC), pp 131–136

33. Uttamchandani S (2015) Scale out storage architectures in the NVM Era, evolution or revolution?
Flashmemory Summit, Santa Clara, CA

34. Volos H, Tack AJ, Swift MM (2011) Mnemosyne: lightweight persistent memory. In: Proceedings
of the Sixteenth International Conference on Architectural Support for Programming Languages and
Operating Systems, March 05–11, 2011, Newport Beach, California, USA https://doi.org/10.1145/19
50365.1950379

35. Wang C, Cao T, Zigman J, Lv F, Zhang Y, Feng X (2016). Efficient management for hybrid memory
in managed language runtime. In: Proceedings of Network and Parallel Computing

36. Wang D, Ganesh B, Tuaycharoen N et al (2005) DRAMsim: a memory system simulator. SIGARCH
Comput Archit News 33(4):100–107

37. WeiW, Jiang D, ChenM (2014) Exploring opportunities for non-volatile memories in big data applica-
tions. In: Big Data Benchmarks, PerformanceOptimization, and EmergingHardware. Springer, Berlin,
pp 209–220

38. Wilton SJE, Jouppi NP (1996) CACTI: an enhanced cache access and cycle time model. IEEE J
Solid-State Circuits 31(5):677–688

39. Wu X, Li J, Zhang L, Speight E et al (2009) Power and performance of read-write aware hybrid caches
with non-volatile memories. In: Design, Automation and Test in Europe Conference and Exhibition,
IEEE, pp 737–742

40. Wu X, Li J, Zhang L, Speight E et al (2009) Hybrid cache architecture with disparate memory tech-
nologies. SIGARCH Comput Archit News 37(3):34–45. https://doi.org/10.1145/1555815.1555761=0
pt

41. Wang Y, Wang T, Liu D, Shao Z, Xue Jingling (2017) Fine grained, direct access file system support
for storage class memory. J Syst Archit 72:80–92

123

http://cs.nyu.edu/%7elerner/spring10/projects/NUMA.pdf
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/1555815.1555761=0pt

NVM Streaker: a fast and reconfigurable performance… 3903

42. Wang Y, Wang T, Shao Z, Liu D, Xue J (2015) File system-independent block device support for
storage class memory. In: The International Workshop of Software-Defined Data Communications
And Storage (SDDCS) 2015, in Conjunction with IEEE INFOCOM 2015, Hongkong

43. Xue C, Zhang Y, Chen Y et al (2011) Emerging non-volatile memories: opportunities and challenges.
In: Proceedings of 9th International Conference onHardware/SoftwareCodesign and SystemSynthesis
(CODES +ISSS), Oct 2011, pp 325–334

44. Yang H, Breslow A, Mars J et al (2013) Bubble-flux: precise online QoS management for increased
utilization inwarehouse scale computers. In: International Symposium onComputer Architecture 2013

45. Zhou P, Zhao B, Yang J et al (2009) A durable and energy efficient main memory using phase change
memory technology. In: Proceedings of the 36th International Symposium on Computer Architecture

46. http://spark.apache.org/
47. https://www.mathworks.com/help/matlab/getting-started-with-matlab.html
48. http://www.m5sim.org/Main_Page
49. https://eng.umd.edu/~blj/dramsim/

123

http://spark.apache.org/
https://www.mathworks.com/help/matlab/getting-started-with-matlab.html
http://www.m5sim.org/Main_Page
https://eng.umd.edu/%7eblj/dramsim/

	NVM Streaker: a fast and reconfigurable performance simulator for non-volatile memory-based memory architecture
	Abstract
	1 Introduction
	2 NVM Streaker: a fast and reconfigurable simulation method
	2.1 The framework of NVM Streaker
	2.2 The evaluation matrix with NVM Streaker

	3 Detailed design of the parameter layer
	3.1 Environmental description
	3.2 Limitation of the parameter layer

	4 Detailed design of the software disturber
	4.1 Kernel designs in the software disturber
	4.1.1 The kernel design for the disturber and the imitator
	4.1.2 The training process

	4.2 Fast Calculation based on NVM Streaker

	5 Experiments and evaluations
	5.1 Platform
	5.2 Benchmarks and matrix for accuracy
	5.3 Evaluations for NVM Streaker
	5.4 Evaluations for Fast Calculation based on NVM Streaker
	5.5 Extended evaluation on time costs

	6 Related works
	6.1 Simulator techniques
	6.2 Optimization techniques
	6.3 Memory management techniques

	7 Conclusions and future work
	Acknowledgements
	References

